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Ahstract. We develop a novel scheme of statistical inference whereby statistical weights m 
assigned to folding pathways. Evidence is presented that supports the fact that this scheme 
accounts for the robustness and expediency of biopolymer folding processes. The essential 
properties of folding are captured by showing that the weight is concenmled over a very 
limited domain of closely related folding pathways. To make probabilistic inferences, we 
constructively define a measure q over the space of folding pathways. Such a scheme stands 
in e o n m  to traditional methods built upan a B o k "  memue over conformation space, 
In order to implement and validate lh is  new approach we combine analytical theory and 
computations that successfully reproduce pulse-chase kinetic experiments. We first present a 
itgorous analytical result by proving hat an appropriate measure exisfs over h e  space of folding 
pathways. This existence theorem is shown to hold in two general scenarios: (i) the unbiased 
folding (UF) scenario, in which the complete chain stm its search in conformation space in an 
unbiased manner, (ii) the sequential folding (SF) scenario, in which the chain s m  searching in 
conformation space concurrently with its own sequential assembling by progressive incorporation 
of monomers. A systematic muse-graining simplification of the space of folding pathways 
is implemented to make lhe computations feasible and to validace our theory as a means of 
accounting for the expedient way of searching for the functionally competent conformation. 

1. Weighting folding pathways 

The dearth of theoretical approaches to explain the robustness and expediency with which a 
biopolymer chain finds its active folding is apparent, as burgeoning research indicates [1-5]. 
Thus, statistical-mechanical methods based upon the consiruction of a Boltzmann measure 
over conformation space [6]  cannot account for the fact that the active structure is formed 
expeditiously under severe time conswaints. The inadequacies of a thermodynamic approach 
rooted in stability considerations become obvious since time constraints force the chain to 
circumvent the so-called Levinthal scenario of random search in conformation space 171. 

To address this problem, we have focused on recent evidence [ 1,2,8-10] that prompts 
us to introduce a measure 7 on the space of folding pathways itself. This evidence indicates 
that, out of the manifold possibilities, the search in conformation space begets only a discrete 
and small number of competing folding pathways. For instance, in the context of RNA 
catalysis, recent experimental evidence [SI and computer simulations [9,10] show that RNA 
cyclization at an internal position and RNA self-splicing are basically the only two processes 
pervasive in ribozyme (catalytic RNA) function governed by just two significant competing 
folding pathways. A meaningful measure should therefore be concenhated exclusively over 
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these pathways. Thus, the theoretical approach rooted in the construction of a measure q 
should deal with the evaluation of integrals of the form 

where a generic notation has been adopted in which I9 denotes any folding pathway and 
h ( A )  indicates the probability of an event A which is realized by an q-measurable bunch 
[ 111 (an open set in a suitable topology) A of folding pathways. In the context of ribozyme 
function, the 'event A' might either be internal cyclization or RNA self-splicing. 

In view of these considerations, the purview of this work is to establish the existence of 
a measure 0 over the space of folding pathways [ 111 and to prove that the concentration of 
this measure is limited to a restricted domain. These facts account for the expediency and 
robustness of the search in conformation space. Moreover, such a measure will be defined 
constructively, based on the stochastic process whose realizations are the folding pathways 
themselves. 

We shall consider only two scenarios in which the expediency of biopolymer folding is 
manifested. Although tentative, each addresses a different context and has been supported 
by experimental evidence using either denaturation-renaturation [6] or pulse-chase kinetic 
probes [12]. The two generic situations are: 

(a) The unbiased folding (UF) scenario. Plausible folding events concurrent with the 
synthesis of the polymer chain do not bias the search for the destination structure since they 
are ultimately suppressed by the synthetic machinery which denaturizes smcture and/or by 
the environment [3,5,6]. 

(b) The sequentialfolding (SF) scenario. The folding events that take place during the 
sequential assembling of the polymer chain bias the way in which conformation space is 
explored [4,9, 101. 

Both situations will be addressed by means of a theoretical approach in order to 
rigorously establish the existence of measure q .  Obviously, the space of folding pathways is 
constructed differently depending on whether the context warrants the up or the SF scenario. 
However, the rigorous proof of the main result is very similar in both cases. Thus, we shall 
present the proof of existence only for the UF scenario and show that it holds valid, mutatis 
mutandis, for the SF scenario. 

This work is organized as follows: sections 2 and 3 deal with the analytical result that 
establishes the existence of a measure over the space of folding pathways under general 
conditions. Sections 4-7 deal with an actual computation of the measure distribution for a 
specific example: the SP of the species MDV-1 RNA, a small template that instructs the RNA 
synthesis performed by the enzyme as replicase 14,121. Since hard facts revealed by pulse- 
chase experiments confirm the SF scenario for this system [12], we shall use this illustrative 
case to validate OUT novel approach to statistical inference by showing that the pathway 
that concentrates the measure is indeed the one detected in pulse-chase experiments. The 
complexity of the actual computation of the measure distribution is due to the fact that 
actual MD simulations may be run for at most 100 ps using state-of-the-art technology. This 
problem calls for a systematic coarse graining of conformation space, as implemented in 
sections 5 and 6. 

The computation is essential to show that the measure q is effectively concentrated on 
a very restricted and reduced manifold of experimentally probed folding pathways. This 
fact in itself suggests that a measure on the space of folding pathways indeed furnishes the 
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proper scheme of inference, as it accounts for the expediency and robustness of the folding 
process. 

Obviously, establishing the validity of the theory in as broad a context as would be 
demanded for any statistical mechanical treatment will require laborious computations with 
case-dependent simplifications of the space of folding pathways, such as the coarsegraining 
procedure described in this work. Thus, although suggestive, the results of this work should 
be regarded as preliminary. 

2. Describing the space of folding pathways 

Throughout this section and the next one, we shall concentrate on the UF scenario in order 
to formally establish the existence of the measure q.  The results are valid, mutaris mutandis, 
for the SF scenario, which will be studied computationally in sections 4 7 .  Although the 
space of folding pathways is different in the latter case, the properties of separability and 
compactness, necessary to establish the existence of the measure, still hold valid for the 
space of SF pathways, as shown in section 3. Thus, the existence theorem holds true in the 

We consider a polymer chain made up of N monomeric units whose conformation is 
defined by M ( N )  degrees of freedom. Each of these internal variables corresponds to a 
dihedral angle representing rotation around a specific bond. Such bonds might be part of 
the backbone chain, like those forming the sugar-phosphate backbone of RNA, or might 
be inherent only to the internal conformation of each residue, as the glycosidic base-sugar 
bond of an RNA nucleotide [6]. Since vibrational degrees of freedom equilibrate on far 
shorter time-scales than rotational ones, it has been rightly assumed that rotational internal 
variables suffice to specify a polymer conformation [6]. 

Thus, we may consider in principle a conformation space X ,  which, given the angular 
nature of the degrees of freedom that specify a conformation, constitutes a torus of dimension 
M ( N ) :  

SF Context. 

X = M ( N )  - t o m .  (2) 

A folding pathway becomes a trajectory on X defined by a map 0 : I -+ X, where I 
denotes a time interval. In the physically unrealistic case of an infinitely slow pathway made 
up of successively equilibrated states, the trajectory is determined entirely by thermodynamic 
or stability control. This means that the trajectory is tangent at point x to the vector field 
@(x) = -grad,U(x), where U ( x )  is the potential energy functional. This potential, in 
turn, determines the Boltzmann measure on X ,  the object upon which classical methods of 
statistical inference are based [61. 

In a more realistic context, the search in conformation space obeys a stochastic process 
.$ : X x  I + X which must be particularly robust since only a small assortment of destination 
shctures occur reproducibly regardless of the initial state and perturbations of the folding 
pathways [4,5,9]. 

In accord with the introductory discussion, we shall focus on devising a proper scheme 
that will allow us to assign weights to folding pathways themselves. Thus, we need to 
introduce a proper space 0 containing all trajectories in X, define its topology Si(@), and 
finally, endow it with a measure f~ induced by the stochastic process .$ : X x I X which 
generates the trajectories. 
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Let 3(X) be the topology on X induced by the metric topology 3(8M(N)) of 8M(N) 
(8 = real numbers), the space in which X is  embedded. That is, 

3(X) = [ A  n X; A E 3($tM"')]. (3 ) 
Let us now define a product topological space of copies or replicas of X which contains in 
principle all continuous and discontinuous folding pathways with associated time span 111: 

y = n x *  x - x , .  (4) 
Id 

Thus, Y 3 0, where 0 = C ( I  -+ X) is the space of continuous maps of the interval 
I on X. This space 0 is endowed with the topology S ( 0 )  inherited from the product 
topology U,,, 3 ( X , )  of Y .  Moreover, 0 i s  naturally endowed with a measure p induced 
by the product Boltzmann measure PrB = n,,, p ~ , ,  defined on ~(n, , ,  X(X,)), the minimal 
sigma algebra of setS generated by the product topology. 

For every x E X, let tx E 0 be a specific realization of the stochastic process 
t : X x I --t X. This realization represents a specific folding pathway with associated 
time span 111 starting with conformation x at t = 0. The collection of such realizations 
constitutes a subset t ( X )  of 0 which is comprised of all the folding pathways that are 
determined by the generating rules that define the stochastic process 5 [4,9]. 

It is not the purview of this section to actually specialize the map to any specific folding 
process [4,5,9]. It suffices to indicate that in the specific case where folding operates under 
time constraints and kinetic control governs the folding pathways, a realization may be 
defined and simulated computationally by means of the following general Markov process. 

For each time f E I, we define a map t + J ( x ,  t )  = ( j  : 1 6 j < n ( x ,  t ) ) ,  where 
J(x, t) = collection of elementary events representing conformational changes which are 
feasible at time f given that the initial conformation x has been chosen at time t = 0, and 
n ( x ,  t )  = number of possible elementary events at time t .  Associated with each event there 
is a unimolecular rate constant K j ( x ,  t )  = rate constant for the j t h  event [4] which may 
take place at time t for a process that starts with conformation x .  The mean t i e  for an 
elementary refolding event is the reciprocal of its unimolecular rate constant. Thus, the only 
elementary events allowed are elementary refolding events that satisfy k j ( x ,  I ) - '  < 111. 

At this point we may define the Markov process by introducing a Poissonian random 
variable r E [0, ~ ~ ~ i ' ) k j ( x ,  t)]. let r* be a realization of r such that if 

then the event j *  = j* (x , t )  is chosen at time f for the folding process that starts with 
conformation x .  Thus the map t + j * ( x , t )  for fixed initial condition x constitutes a 
realization of the Markov process which unambiguously determines the trajectory tx. 

3. The existence of a measure on the space of folding pathways 

At this point we shall formulate and prove the following theorem. 
The stochastic process 6 indexed by a starting conformation x E X induces a measure 

on 0 which satisfies the relation 

rlA = x t ( x ) ( 8 ) W f i )  (6) 

In precise terms, the p-measurable function xacx) is the Radon-Nikodym derivative of 
where xlcx,(8) = 1 if there exists x E X such that 8 = e x ,  and xt~x)(tp) = 0 otherwise. 

q with respect to p.  
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Proof. The space X is compact when endowed with topology S(X), thus, by Tikhonov’s 
theorem. Y is compact with the product topology, and 0 is also compact when endowed with 
the topology inherited from the product topology. Since 0 is also Hausdorff, we shall apply 
the Riesz-Markov representation theorem [ 111. Consider the space of continuous functionals 
C(0), then, given a functional F in the dual space C(0)*, there exists a measure 7 on 0 
such that 

F(h) = 1 h(b)dq(b) for any h in C(0). 
E) 

Since there are no restrictions on F ,  we take 

In equation (S), the symbol ‘(. . J X ’  denotes the average over the ensemble of realizations 
tZ for fixed initial condition x .  Thus, we have shown that 7 is induced by the stochastic 
process t .  

The measure 7 may be constructed as follows. 
Let A E %(e), then we define its measure as 

q A  = Sup(F(h), 0 < h < 1, h 5 C(0), A 3 support(h)}. (9) 

This real functional defined on open sets may be canonically extended to a regular 

Consider now the set D ( A )  of functionals f(b) of the form 
measure over ~ (n , , ,  X ( X , )  n 0) [lll. 

f (e) [ X,ca,(ntbs)f(t)exP(-Bll(n,b))dt ) / I ~ I  ~ e x p ( - ~ U ( x ) ) ~ x  (10) 

where R, : I‘ + Xt is the canonical projection, B = l / k ~ T  (T  = temperature, 
ks = Boltzmann constant), 0 < f ( t )  4 1 is any  continuous real function, Xn,(A) is the 
characteristic function of the projection of A on the replica X,, and Sx is the differential 
volume in conformation space X. 

The set D ( A )  is dense in G(A) = (0 < h < 1, h E C(0), A 3 support(h)] with respect 
to the norm determined by the measure p. Therefore, we have 

qA = S u p ( F ( h ) ,  h E D ( A ) ] .  (11) 

This equation enables us to compute the measure of A, thus verifying equation (6): 

7A = / / Xn,ca)(~&) exP(-b’U(nt&)) 111 exp(-BU(x))ax 
X I  Is, 

This completes the proof of the theorem. U 

The validity of this theorem in the case of the SF scenario for a chain of total length 
NO is apparent once we realise that the space Y = n l s N c N o ( M ( N )  -torus) is in this case 
also Hausdorff and compact with the product topology. 
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4. A measure within the SF scenario 

Kinetic experiments determining the uneven rate of RNA replication furnish compelling 
evidence that RNA structure is often formed under stringent time constraints 112-141. This 
observation is corroborated by the metastable nature of the biologically competent emerging 
structure [14]. These facts have prompted the author to define an SF scenario in which the 
search for the structure starts during the very synthesis of the molecule [4, 141. This scenario 
implies an exploration of conformation space concurrent with the sequential assembling of 
the RNA chain. In other words, the growing chain folds as it is being assembled and such 
early events inevitably bias the search for the active structure of the fully formed chain. 

The SF scenario has been confirmed by reinterpreting the experiments that reveal a 
variable rate of chain elongation 112,131: it has been demonstrated that the experimentally 
probed pause sites during progressive template-instructed RNA replication are due to 
upstream refolding events concurrent with progressive elongation of the RNA chain. An 
SF pathway is a sequence of such events and has been confirmed to lead to the biologically 
active structure [4. 12-14]. Thus, computer simulations of SF have been readily turned 
into algorithms for structure prediction [I51 of paramount interest whenever the structure is 
searched for under time constraints. 

The previous analysis suggests that the BOkZmaM weights assigned to foldings of 
the fully formed chain might not agree with the statistical weights resulting from SF. 
This is indeed the case whenever SF has been confirmed experimentally [4,12-151. The 
biologically active structure is the result of a kinetically controlled pathway which reflects 
the opportunistic search in a conformation space of increasingly higher dimension, Thus, the 
destination structure, being kinetically determined, is often metastable, unless the relevant 
experimental timescale is long enough to allow for full relaxation. 

will be one that is essentially concentrated on 
the SF pathway probed by pulse-chase experiments whose destination structure coincides 
with the biologically competent folding. 

A feasible construction of rl will demand a systematic simplification of the conformation 
space of increasingly higher dimensions. Thus, a suitable coarse graining will be 
implemented in section 2 so that rapidly interconverting secondary structures will be 
clustered together by means of an identification formalized as an equivalence relation. 
Within this representation, SF will be simulated computationally as a sequence of transitions 
between rapidly equilibrated clusters. Thus, each sequence of transitions will be considered 
to be a specific realization of a stochastic process. This stochastic process is actually'the 
projection onto the coarse-grained space of a Monte Carlo-simulated stochastic process 
representing refolding events concurrent with chain elongation events [4,14,15]. 

In this context an appropriate measure 

5. Coarse-graining conformation space 

We intend to characterize the complex dynamics of sequential folding for a specific RNA 
molecule NO monomers long by introducing a coarse graining of the extended conformation 
space X. The space X contains all plausible secondary structures (intrachain base pair 
patterns subject to the Watson-Crick complementarity rules G-C, A-U) formed by segments 
of every length N ,  with 1 < N < No. As might be obvious to the reader, we have altered 
the representational framework with respect to the one presented in sections 2 and 3. This, 
however, does not affect the validity of the existence theorems, since X remains Hausdorff 
and compact. 
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The space X itself may be viewed as a preliminary coarse graining of the formal 
reunion of coordinate spaces for all chain lengths. This construction is formalized dividing 
the reunion of coordinate spaces by an equivalence relation: 

x = U w’M“)~ (13) 
ICNSNo 

where W is the set of real numbers and W 3 M ( N )  the conformation space for an RNA chain of 
length N made up of M ( N )  atoms. The equivalence relation ‘w’ is defined as follows: two 
conformations U and p adopted by RNA chains of lengths N(u)  and N ( p ) ,  respectively, are 
regarded as equivalent (U w p )  if their secondary structure is identical, that is, if U and p 
have the same base-pairing pattern. 

We shall now simplify the dynamical description by first noting that as the elements 
in X are regarded modulo low kinetic barriers of interconversion, the resulting dynamics 
of transitions between clusters of conformations follow a random energy model (REM) 
[16]. That is, if we group structures that interconvert on fast timescales of the order of 
A-’ e~p(N’ /~’~) ,  with A = lo3 s-I and E 2 0, the expected activation energy barriers for 
monitored transitions between equilibrated clusters grow logarithmically in real time 141. 

The REM description will be shown to break down as the size of the clusters is increased. 
As we approach ergodic cluster sizes, that is, as we identify conformations separated by 
barriers of order a distinctively organized region of the energy spectrum is explored. 
Thus, the activation energy barriers of significant transitions grow far more slowly than any 
multiple of In[t/n(N(t)], where Q(N) = A-’ exp(N’/*-‘) is the characteristic timescale 
for a chain that has reached length N at time 1. 

Thus, we shall conclude that only the upper portion of the extended energy spectrum 
for a real RNA chain that folds sequentially is random and uncorrelated (cf [17]). SF delivers 
the molecule to organized states only after =-like equilibration has taken place within 
clusters of rapidly interconverting states. 

We shall represent each coarse graining by a quotient space consisting of equivalence 
classes, each of which is formed by conformations that have been grouped and thus are 
regarded as equivalent. A convenient conformation space X contains all folded segments 
of various lengths regarded modulo their secondary structure. Thus, each equivalence class 
is labelled by a base-pairing pattern. 

In order to represent the dynamics of sequential folding we shall now define a quotient 
space X /  =e in which we regard secondary structures modulo the kinetic barriers associated 
to their interconversion. That is, the equivalence relation ‘sa’ is defined as follows. 

Let s, s’ E 3, then s s’ if and only if 

- In(k(s -+ s’)/A) = O(N,,,i.(s, SI)=) 

- In(k(s’ -+ s)/A) = O(N,,,i,(s, s’)O) 

where f < [Y < f .  and k(s + s‘) is the unimolecular rate constant [8,10] for the rafe- 
limiting step in the interconversion between the member of minimal length in class s and 
the member of minimal length in class s’. The integer N,,&, 8’) is the minimum chain 
length in the reunion s Us’. Each equivalence relation =e defined on X corresponds to 
a specific truncation of the activation energy landscape such that secondary structures are 
regarded modulo kinetic barriers of interconversion of order Nu. 

At this point we may describe the dynamics for different coarse grainings of the 
activation energy landscape. In rigorous terms, if the map A : X -+ T X  (T = 
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tangent bundle) denotes the vector field whose trajectories are the SF pathways, we are 
interested in describing the field A, : XI=,-? T[X/=J, a map that makes the following 
diagram commutative: 

0 x -+ 

where O and T O  denote the canonical projections which associate each element to its 
equivalence class. The commutativity of the diagram translates into the operator equation: 

Am@ = [TOIA.  (16) 

Thus, for chain length N ,  the map A= determines the possible events whose associated 
timescales are larger than A-' exp(N"). 

The A-dynamics has been simulated using kinetically controlled Monte Carlo methods 
[4,14]. Thus, a sequence of refolding and chain growth events becomes a realization of 
a Markov chain representing a trajectory in 3. Such computations have been described 
elsewhere [4,14], and thus only the basic tenets are outlined. 

For each value of the contour variable N we define a map 

N -+ J ( N )  = ( j  : 1 < j < n ( N ) }  

where J ( N )  is a collection of elementary events which a segment of length N might 
undergo, and n(N) is the number of elementary events. Associated with each event there is 
a unimolecular rate constant kj(N) = rate constant for the j t h  event which may take place 
as the chain reaches length N .  The only elementary events allowed are chain-elongation 
steps ( j  = 1). or elementary refolding events ( j  > 2) that should satisfy kj(N)-' < tsxp. 
where t& is the experimental replication turnover timescale (e 15 s for an RNA sequence 
220 nucleotides long) [12,14]. The mean time for an elementary refolding event is the 
reciprocal of its unimolecular rate constant. Since X is mcde up of secondary structures for 
strands of various lengths, the mean time for an elementary refolding event is the sum of 
the mean time of a single helix decay (or dismantling) event, which is zero in the particular 
case where no helix needs to be dismantled, plus the mean time of a helix formation event. 

The unimolecular rate constants for helix decay and helix formation have been obtained 
in analytical form [4,18] and used extensively in our computations. Their associated kinetic 
barriers depend, respectively, on the enthalpic loss associated with helix formation and 
the entropy loss associated with loop closure. Thus, the compilation of thermodynamic 
parameters 1191 begets the compilation of unimolecular rate constants upon which the 
Markov chain is constructed. The Markovian nature of the process is in accord with 
experimental evidence [ 11 and is defined as follows. 

Let r&[O, ~ ~ ~ ~ ) k j ( N ) ]  be a Poissonian random variable and let r* be a realization of 
r such that if 

then the event j' = j * ( N )  is chosen as the growing RNA chain reaches length N .  The 
sequence ( j*( l ) ,  j*(2), j*(3), . . .} constitutes a realization of the Markov process. 
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A regular site N = N(reg) along the RNA chain corresponds to a segment for which 
chain elongation is the prevailing event, that is: j*(N(reg)) = 1. On the other hand, at a 
pause site N = N(pause) there exists at least one unimolecular rate constant for refolding 
which is comparable to k,(N(reg)) = kl(N(pause)) = 50 s-l [4]. 

Thus, the A-dynamics are characterized by a relaxation process and the expected 
relaxation time, (r(relax)), for each transition is computed as 

(r(re1ax)) = [kp(N(pause))]-'. (18) 

A Markov chain { j * ( l ) ,  j * ( 2 ) ,  j * ( 3 ) ,  . . .  I determining a trajectory in X induces another 
Markov chain 1 j z ( N ) l  i n  X/ =a: the event j ; ( N )  only exists and is equal to j * ( N )  if 
and only if k p ( N )  < Aexp(-N"). Thus, the Aa dynamics may be followed using the 
projection scheme defined by the diagram for specific RNA molecules where the SF scenario 
has been proven to hold [IO, 141. This is shown in figures 1 and 2.  

For convenience, we monitor in real time the number In(f(t(relax))), where f ~3 lo6 
is the rate constant for single base pair formation [4,14, IS]. This quantity is proportional 
to the activation energy barrier - In(kp , (N) /A)  of a transition in X/ea, 

The results for the species Qs MDV I-RNA (NO = 220) [12,14] are displayed in figure 1. 
The open and solid circles correspond to n = 0.25 and 0.28, respectively. The open squares 
are experimental results obtained by measuring the variable rate of chain elongation using 
pulse-chase techniques [12]. The chain elongation delay at specific sites along the RNA 
sequence [12] has been satisfactorily atfributed to the occurrence of a refolding event, in 
accord with the simulations [14]. Thus, the experimental results reported in [12] appear 
to correspond to an SF dynamics coarse grained to the level n = 0.28. The logarithmic 
dependence of the activation barriers on real time is the signature of a REM-like relaxation 
which has been estimated to hold up to coarse grainings of the order of TZ: 0.31 
for this RNA species. Beyond this exponent, the kinetic barriers grow far more slowly 
than any multiple of the logarithm of real time, reflecting a considerable departure from 
REM behaviour. This typical organized behaviour is illustrated by the open triangles, 
corresponding to [Y = 0.44. This fact reveals the emergence of structural organization 
for larger timescales and a highly correlated lower portion of the extended energy spectrum 
which this species explores in longer times during its SF. 

A similar behaviour has been observed for the species cob15, the fifth intron of yeast 
apocytochrome b gene [lo], as shown in figure 2. Again, an REM behaviour is detected 
for n = 0.25 (open circles), and a higher level of organization emerges for more drastic 
coarse graining at 01 = 0.35 (solid squares). The critical exponent has been estimated at 
nait % 0.27 for this species. 

The range of dynamic coarse grainings of conformation space that yield REM dynamics is 
obviously dependent on the RNA primary sequence and its correlations, as the two examples 
above show. Thus, for a purely random RNA sequence, we obviously have = 0.5. 

6. The measure over coarse-grained SF pathways 

Given the A, dynamics we now consider the space of Am pathways, which we denote 0,: 
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Figure 1. Time dcpendence of the transition kinetic Figure 2. Coarse-grained dynamics for the species 
barrier when monitoring the dynmics in XI+ for Q@ cob15. The same notation as in figure 1 has teen 
MDVI-RNA. The symbols f ,  f, (f(re1ax)) and S2(N( t ) )  adopted. The open circles correspond to a = 0.25 and 
denote red time, base pair formation rate constant, the solid squares to d = 0.35. 
expected relaxation time and characteristic timescale, 
respectively. The REM bchaviour is revealed by the open 
circles (cl = 0.25) and the solid circles (a = 0.28). and 
the results of pulse-chase experiments x e  indicated by 
open squares The open triangles (or = 0.44) reflect 
a high level of organization, suggesting 3 correlated 
lower portion of lhc extended energy specwm explored 
within large timescales. 

where N(in) is the minimal length for the cluster of structures that constitutes the set of 
initial conditions. Thus, an element 0, = ( s N ( ~ " ) ,  s~ ( i~ )+ l ,  S N ( ~ ~ ) + Z , .  . .) of 0, is a sequence 
of N u  clusters which determines unambiguously an SF pathway. 

In order to construct a measure q over 0, we shall start by considering the Boltzmann 
measure p~g defined over X(in) = IR3M(N(i"))/,: 

d@Lg (sN(in)) = exp(-Bs(s,v(i.))) dv(sN(i.))/Z(N(in)). (20) 

In equation (20), Z(N(in)) is the partition function resolved up to secondary structure for 
the RNA chain segment of length N(in), &(sN(h)) is the energy of the secondary structure 
SN(~" )  E X(in) and dL'(SN(in)) is the differential volume in X(in) around S N ( ~ ) .  

The measure defined by equation (20) induces a measure pu over X(in)/+ as follows: 
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where s in equation (21) is a representative structure of the cluster or class s. 
At this stage we may define the coarse-grained measure q .  Let h E C(0.) be any 

continuous functional defined over e,, then we may define a functional F in the dual of 
C(0,), F E C(@,)*, as follows: 

where 

Q,"(s) = (s(0) = s, s('), s@), . . .). (23) 

In the sequence @&(s), di) E de) is the resulting structure starting from E ~ ( ~ - 1 )  after 
the event j ,*(N(s)  + i - 1) has taken place. If the event j,X(N(s) + i - 1) happens to be 
.projected out of the Am dynamics, then since they both 
belong to the same Nu cluster. 

In accordance with the results of sections 2 and 3, and making use of Riesz's theorem 
1111, given the functional F ,  there exists a regular measure q over the space 0, satisfying 

is taken to be identical to 

F(h) = h(&)dq(&) for any h in C(0,). L 
Thus the measure q defined by equation (24) is induced by the Boltzmann measure p ,  

on the space of initial conditions and the kinetically controlled stochastic process whose 
realizations are the SF pathways obtained for chosen initial conditions. 

7. The SF pathways that concentrate the measure 17 

We shall illustrate and assess the power of our approach by determining the SF pathway 
for the species Qp MDV-I RNA [E-141 that concentrate8 the measure q ,  and show that the 
destination structure for this pathway coincides with the biologically active structure shown 
in figure 3. 

The A, dynamics are described here by an inverted tree where each vertex represents 
an Ne cluster and each edge represents the fastest transition between clusters. Each path 
along the tree corresponds to a realization of the stochastic process determined by a specific 
choice in X(in)/ E-. The particular tree for Qp MDV-I RNA is displayed in figure 4 for 
a = 0.28, the precise value for which the A, dynamics reproduces the experimental data 
presented in [12] and displayed in figure 1. 

The base of the tree represents the space of initial conditions X(in)/== for N(in) = 25. 
In this space we distinguish 11 clusters, each of which represents a different folding of the 
primer (N = 25) region. The primer region exhibits a very high level of Watson-Crick 
G-C self-complementarity, as can be seen in figure 3. 

The fully formed hairpin that takes maximum advantage of this complementarity is 
displayed on the LHS of figure 3 and is denoted 'folded primer' in figure 4. The pathway 
indicated by the bold line resulting from successive refoldings and chain elongations built 
upon this structure leads to the active destination structure denoted A and displayed in full 
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Figure 3. Active secondary structure for Q,8 MDV-I RNA, a template directing RNA synthesis 
by Q,8 replicase. The sites indicated by numbers denote experimentally determined pause sites 
where the occurrence of M upstrem refolding event causes the enzyme (0 idle for a relatively 
long period of time until the next nucleotide is incorporated. These sites are in perfect ag~eement 
with the camputationally determined N(pause)s, where jz(N(pause)) > 2, c1 = 0.28. The 
structure displayed is identical to the destination svucture which results from the pathway that 
concentrates 81% of measure 7. 

in figure 3. This structure is reached well within the experimental timescale coresponding 
to a replication turnover re,, x 15 s [121. Structure A eventually relaxes to the global free 
energy minimum I ,  albeit in a longer and unrealistic timescale, as indicated in figure 4. This 
inactive structure is obtained by binding to each other the two 25 nucleotides long extremes 
of the molecule. The reader may notice that both extremes are highly complementary and 
thus their binding to each other is energetically (but not entropically) advantageous with 
respect to adopting the active conformation. 

Of paramount importance is the fact that the pathway developed by starting with the 
folded primer concentrates 81% of the measure q and coincides with the experimentally 
determined pathway for template-instructed Qp MDV-I RNA replication [ 12-14]. Within the 
uncertainties of the computation, the remaining 19% of measure q is evenly distributed 
between the remaining pathways. The initial conditions leading to the latter pathways are 
represented by clusters of structures containing lower degrees of base pairing corresponding 
to slippage of the folded primer. Such slippage produces more unstable initial structures 
and the resulting pathways have each an ascribed q-weight of approximately 2%. 

The extreme situation is encoutnered when the primer is totally unfolded. The resulting 
pathway is represented by a bold line on the RHS of figure 4. This pathway leads 
expeditiously to the inert global minimum since the primer is readily available to bind 
to the opposite extremity as soon as the molecule is totally assembled. This pathway 
concentrates 48% of the measure p, while the biologically relevant pathway concentrates 
44%. 

The inert nature of the destination smcture for the most heavily p-weighted pathway is 
apparent: as the two extremities of the molecule are bound to each other, no initial signal 
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Figure 4. Graphic representation of the A, dynamics with IY = 0.28 for the species Q# 
MDV.I RNA. The inverted uee represents the come-pined SF pathway space 0.. The vertical 
axis denotes real time, Ule horizontal lowest layer of vertices is the space X ( i n ) / q  of initial 
conditions and each edge in the graph represents the fastest transition between Cwo N" cluster. 

for replication is possible [14,15]. 
To summarize, this analysis reveals that the measure is q ,  and not the thermodynamically 

determined p. which truly captures the essential physical reality of the folding of sequentially 
assembled RNA structure. The measure q should be regarded as the starting point to develop 
a new scheme of probabilistic inference suitable for biopolymer folding subject to realistic 
time constraints. 

The fact that this measure is actually concentrated only upon experimentally conlimed 
pathways suggests that the approach presented in this work might indeed be promising as 
a means to account for the expediency and robustness of the folding process. 
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